MTH 406: Differential geometry of curves and surfaces

Homework III

Problems for practice

1. Determine whether the following subsets of \mathbb{R}^{3} are regular surfaces. If they are, find coordinate neighborhoods that cover them, otherwise, explain why they are not regular.
(a) The cylinder $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}$.
(b) $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq 1\right.$ and $\left.z=0\right\}$.
(c) $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}<1\right.$ and $\left.z=0\right\}$.
(d) The two-sheeted cone $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}\right\}$.
(e) $\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in V\right.$ and $\left.z=0\right\}$, where V is an open subset of the $x y$-plane.
(f) $\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in C\right\}$, where C is the lemniscate (i.e. Figure 8 curve) in the $x y$-plane.
(g) $\left\{(x, y, z) \in \mathbb{R}^{3}: z=x^{2}-y^{2}\right\}$.
2. Find the critical points, critical values, and the regular values for each of the following functions.
(a) $f(x, y, z)=(x+y+z-1)^{2}$.
(b) $f(x, y, z)=x y z^{2}$.
(c) $f(x, y, z)=z^{2}$.
3. Determine whether the following maps are differentiable.
(a) The map $d: S \rightarrow \mathbb{R}$ given by $d(p)=\left|p-p_{0}\right|$, where S is a regular surface and $p_{0} \in \mathbb{R}^{3} \backslash S$.
(b) The orthogonal projection $\pi: S \rightarrow \mathbb{R}^{2}$, where S is a regular surface.
4. Show that the following maps are diffeomorphisms.
(a) The antipodal map $A: S^{2} \rightarrow S^{2}:(x, y, z) \stackrel{A}{\mapsto}(-x,-y,-z)$.
(b) The stereographic projection $\rho: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$, where N is the north pole.
(c) The rotation of a surface of revolution about its axis of rotation.
(d) Reflection of a surface about a plane that it is symmetric about.
