MTH 406: Differential geometry of curves and surfaces

Homework III

Problems for practice

- 1. Determine whether the following subsets of \mathbb{R}^3 are regular surfaces. If they are, find coordinate neighborhoods that cover them, otherwise, explain why they are not regular.
 - (a) The cylinder $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}.$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1 \text{ and } z = 0\}.$
 - (c) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 1 \text{ and } z = 0\}.$
 - (d) The two-sheeted cone $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}.$
 - (e) $\{(x, y, z) \in \mathbb{R}^3 : (x, y) \in V \text{ and } z = 0\}$, where V is an open subset of the xy-plane.
 - (f) $\{(x, y, z) \in \mathbb{R}^3 : (x, y) \in C\}$, where C is the lemniscate (i.e. Figure 8 curve) in the xy-plane.
 - (g) $\{(x, y, z) \in \mathbb{R}^3 : z = x^2 y^2\}.$
- 2. Find the critical points, critical values, and the regular values for each of the following functions.
 - (a) $f(x, y, z) = (x + y + z 1)^2$.
 - (b) $f(x, y, z) = xyz^2$.
 - (c) $f(x, y, z) = z^2$.
- 3. Determine whether the following maps are differentiable.
 - (a) The map $d: S \to \mathbb{R}$ given by $d(p) = |p p_0|$, where S is a regular surface and $p_0 \in \mathbb{R}^3 \setminus S$.
 - (b) The orthogonal projection $\pi: S \to \mathbb{R}^2$, where S is a regular surface.
- 4. Show that the following maps are diffeomorphisms.
 - (a) The antipodal map $A: S^2 \to S^2: (x, y, z) \xrightarrow{A} (-x, -y, -z).$
 - (b) The stereographic projection $\rho: S^2 \setminus \{N\} \to \mathbb{R}^2$, where N is the north pole.
 - (c) The rotation of a surface of revolution about its axis of rotation.
 - (d) Reflection of a surface about a plane that it is symmetric about.